

Earth Observation & Social Sensing BigData pilot project EO&SS@BigData

Towards an infrastructure for interactive Earth Observation data analysis and processing

A. Burger and P. Soille

The Joint Research Centre (JRC)

- JRC is the science service of the European Commission
- JRC provides independent scientific support to EU policy making
- Wide usage of Earth Observation [EO] data as basis for research and policy support

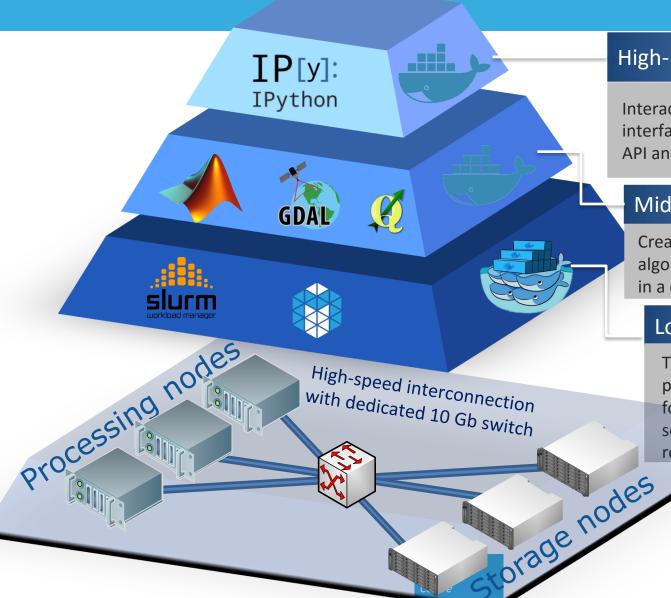
"Earth Observation & Social Sensing Big Data Pilot Project"

- The EU Copernicus Programme with the Sentinel fleet of satellites acts as a game changer by bringing EO in the Big Data era:
 - expected 10TB/day of free and open data
 - Requires new approaches for data management and processing
- Pilot project launched in January 2015
- Major goal: set up a central infrastructure for storing and processing of Earth Observation and Social Sensing data at JRC

Sentinel-1 (Credits: ESA/P. Carril)

Sentinel-2 (Credits: ESA/P. Carril)

Sentinel-3 (Credits: ESA/J. Huart)


Proposal for a "JRC Earth Observation Data Processing Platform" (JEO-DPP)

- Main focus on satellite image data
- Shall support existing processing workflows and environments (C/C++, Python, Matlab, Java)
- Provide different processing levels:
 - Low-level batch processing
 - High-level interactive processing
- Project timeline:
 - Prototype development: end 2015 mid 2017
 - Scaling-up in 2017/18: JRC Data Centre vs a public cloud solution

JEO-DPP processing components

High-Level Processing

Interactive programming via a Web interface based on Python with custom API and processing modules.

Mid-Level Processing

Create prototype programs for algorithm tests on limited sample data in a dedicated Docker container.

Low-Level Processing

Translate the prototype programs to an operational tool for large-scale processing - sending jobs through the resource manager.

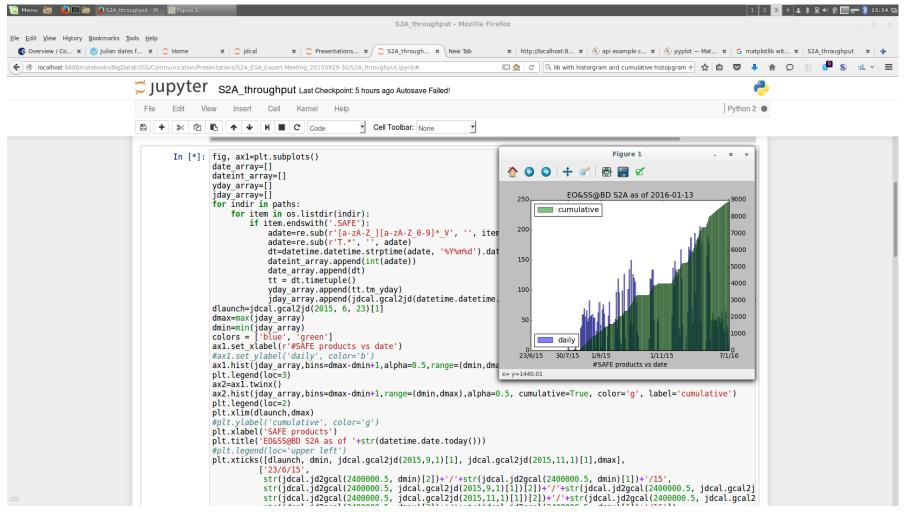
Low-level batch processing

- Running large-scale data processing tasks in a cluster environment
- Docker containers for flexible management of processing environments

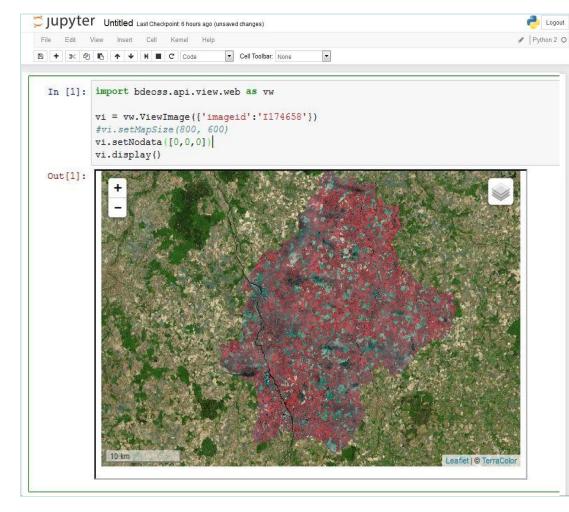
- Custom builds for different requirements
- Facilitates upgrades of processing environment (libraries, tools)
- Run through a workload manager
 - Using SLURM scheduler
 - Usage of MESOS as backend to be evaluated Advantage: better integration with Docker environment

High-level interactive processing

Web user interface to server-based data processing

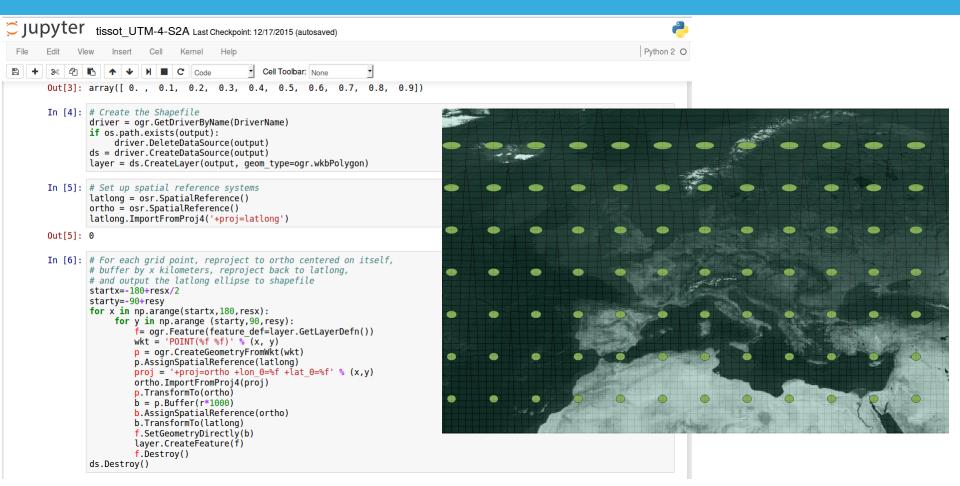


- Based on *IPython Notebook* (*Jupyter*)
- Development of a data analysis and processing API
 - Python as core, with C/C++ modules
 - Incorporate modules developed by various projects
- Community building
 - Sharing expertise and analysis algorithms
 - Share and extend existing Notebooks


IPython/Jupyter interactive analysis

European Commission

Interactive processing - visualisation


- Visualisation of intermediate results
- Interaction with predefined processing and visualization Web services

Jupyter with GDAL-Python API and rendering in desktop client

European

Commission

Interactive Processing – set-up and interfacing

User Notebooks running in Docker containers

- Separating user environments
- Allows for detailed resource allocation
- Web interface for managing user Notebooks
- Reverse proxy set-up for accessing Docker instances
- Interaction with workload manager
 - Launching batch processing from Notebooks
 running large-scale processing from your browser

Web services for everyone?

- Public or restricted ?
- Data view services via standard protocols
- Web processing services
 - Embeddable in Web applications or called from processing scripts
 - For example for
 - Image sub-setting: areas of interest, band combination,
 - Image compositing
 - Cloud-free image mosaicking
 - Atmospheric correction
 - ...

Using public Cloud solutions

- Shall be evaluated for the scaling-up phase
 - JRC Data Centre vs Public Cloud
 - Possible scenarios with mixed environments
 JRC <-> Public Cloud
- Interfacing between local and public cloud infrastructure
 - Docker containers for portability of processing environment
 - Seamless distributed processing
 - Issue is the availability of input data
 - Distributed file system for data sharing
- Location of processing transparent for users

Thank you for your attention!

